A Computer Aided Digonsis Systems: Using Genetic Algorithm with Classifier of the K-nearest Neighbours

نویسندگان

  • Suhail M. Odeh
  • Eduardo Ros
  • Ignacio Rojas
چکیده

This paper presents a computer aided diagnosis system for skin lesions. Diverse parameters or features extracted from fluorescence images are evaluated for cancer diagnosis. The selection of parameters has a significant effect on the cost and accuracy of an automated classifier. The genetic algorithm (GA) performs parameters selection using the classifier of the K-nearest neighbours (KNN). We evaluate the classification performance of each subset of parameters selected by the genetic algorithm. This classification approach is modular and enables easy inclusion and exclusion of parameters. This facilitates the evaluation of their significance related to the skin cancer diagnosis. We have implemented this parameter evaluation scheme adopting a strategy that automatically optimizes the K-nearest neighbours classifier and indicates which features are more relevant for the diagnosis problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR

The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

Evolutionary feature weighting to improve the performance of multi-label lazy algorithms

In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008